Metabolism and pathways for denitration of organic nitrates in the human liver.
نویسندگان
چکیده
Liver first-pass metabolism differs considerably among organic nitrates, but little information exists on the mechanism of denitration of these compounds in hepatic tissue. The metabolism of nitrooxybutyl-esters of flurbiprofen and ferulic-acid, a class of organic nitrates with potential therapeutic implication in variety of different conditions, was investigated in comparison with glyceryl trinitrate (GTN) in human liver by a multiple approach, using a spontaneous metabolism-independent nitric oxide (NO) donor [3-(aminopropyl)-1-hydroxy-3-isopropyl-2-oxo-1-triazene (NOC-5)] as a reference tool. Nitrooxybutyl-esters were rapidly and quantitatively metabolized to their respective parent compounds and the organic nitrate moiety nitrooxybutyl-alcohol (NOBA). Differently from GTN, which was rapidly and completely metabolized to nitrite, NOBA was slowly metabolized to nitrate. In contrast to the spontaneous NO donor NOC-5, NOBA and GTN did not generate detectable NO and failed to suppress the activity of cytochrome P450, an enzyme known to be inhibited by NO. The direct identification of NOBA after liver metabolism targets this compound as the functional organic nitrate metabolite of nitrooxybutyl-esters. Moreover, the investigation of the pathways for denitration of NOBA and GTN suggests that organic nitrates are not primarily metabolized to NO in the liver but to different extents of nitrite or nitrate depending in their different chemical structure. Therefore, cytochrome P450-dependent metabolism of concomitant drugs is not likely to be affected by oral coadministration of organic nitrates. However, the first pass may differently affect the pharmacological profile of organic nitrates in connection with the different extent of denitration and the distinct bioactive species generated and exported from the liver (nitrate or nitrite).
منابع مشابه
Biotransformation of glyceryl trinitrate by rat hepatic microsomal glutathione S-transferase 1.
Although the biotransformation of organic nitrates by the cytosolic glutathione S-transferases (GSTs) is well known, the relative contribution of the microsomal GST (MGST1) to nitrate biotransformation has not been described. We therefore compared the denitration of glyceryl trinitrate (GTN) by purified rat liver MGST1 and cytosolic GSTs. Both MGST1 and cytosolic GSTs catalyzed the denitration ...
متن کاملA Description of Reference Ranges for Organic Acids in Urine Samples from A Pediatric Population in Iran
Background: Organic acids refer to a family of compounds that are intermediates in a variety of metabolic pathways. Many organic acids are present in urine from clinically normal individuals. Elevated levels of urine organic acids cause to the organic acidurias, disorders in which some metabolic pathways in organic acid metabolism are blocked. The present work identified major and minor urinary...
متن کاملContinuous administration of organic nitrate decreases hepatic cytochrome P450.
We previously reported that cytochrome P450 (P450) is a key enzyme of organic nitrate biotransformation and that P450 levels of the heart and its vessels markedly decreased at the development of nitrate tolerance. Although our attention was mainly focused on the circulatory organs, most organic nitrates, including nitroglycerin (NTG), are metabolized in the liver, where nitric oxide (NO) is con...
متن کاملKnowledge, Attitude and Practice of Physicians in Appropriate Prescription of Organic Nitrates in Iran
Organic nitrates are commonly used in angina pectoris and ischemic cardiomyopathy. In order to optimize their effectiveness and patient convenience, several aspects must be observed. Adequate doses, suitable dosage forms and asymmetric pattern of usage to prevent the nitrate tolerance are some factors that a physician must be familiar with. The objective of the present study was to define the p...
متن کاملMetabolism and Cytotoxic Mechanisms of Nitroglycerin in Isolated Rat Hepatocytes
It has been proposed that organic nitrates such as glyceryl trinitrate (GTN), used in the treatment of cardiovascular diseases, act by producing nitric oxide (NO). However, the biochemical pathway for NO formation from GTN is not well understood. In the present study, we showed that nitrate formation from GTN, by isolated rat hepatocytes, was inhibited about 50% when cellular glutathione w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 346 1 شماره
صفحات -
تاریخ انتشار 2013